Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589507

RESUMO

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Assuntos
Cipriniformes , Triploidia , Animais , Feminino , Masculino , Tetraploidia , Gametogênese , Haploidia , Cipriniformes/genética
2.
Mol Ecol ; 33(9): e17337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558465

RESUMO

Phylogeography bears an important part in ecology and evolution. However, current phylogeographic studies are largely constrained by limited numbers of individual samples. Using an environmental DNA (eDNA) assay for phylogeographic analyses, this study provides detailed information regarding the history of Siberian stone loach Barbatula toni, a primary freshwater fish across the whole range of Hokkaido, Japan. Based on an eDNA metabarcoding on 293 river water samples, we detected eDNA from B. toni in 189 rivers. A total of 51 samples, representing the entire island, were then selected from the B. toni eDNA-positive sample set for the subsequent analyses. To elucidate the phylogeographic structure of B. toni, newly developed eDNA metabarcoding primers (Barba-cytb-F/R) were applied to these samples, specifically targeting their haplotypic variation in cytochrome b. After a bioinformatic processing to mitigate haplotypic false positives, a total of 50 eDNA haplotypes were identified. Two regionally restricted, genetically distinct lineages of the species were revealed as a result of phylogeographic analyses on the haplotypes and tissue-derived DNA from B. toni. According to a molecular clock analysis, they have been genetically isolated for at least 1.5 million years, suggesting their ancient origin and colonisation of Hokkaido, presumably in the glacial periods. These results demonstrate how freshwater fishes can alter their distributions over evolutionary timescales and how eDNA assay can deepen our understanding of phylogeography.


Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Haplótipos , Filogeografia , Rios , Animais , Haplótipos/genética , Japão , DNA Ambiental/genética , Citocromos b/genética , Água Doce , Filogenia , Cipriniformes/genética , Cipriniformes/classificação
3.
Int J Biol Macromol ; 265(Pt 2): 130985, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518944

RESUMO

Uncoordinated (Unc) 51-like kinase (ulk1) and ulk2 are closely involved in autophagy activation, but little is known about their roles in regulating glucose homeostasis. In this study, the genes of ulk1a, ulk1b and ulk2 were cloned and characterized in fish Megalobrama amblycephala. All the three genes shared the approximate N-terminal kinase domain and the C-terminal Atg1-like_tMIT domain structure, while the amino acid sequence identity of them are different between M. amblycephala and other vertebrates. Their transcripts were widely observed in various tissues (brain, muscle, gill, heart, spleen, eye, liver, intestine, abdominal adipose and kidney), but differed in tissue expression patterns. During the glucose tolerance test and the insulin tolerance test, the up-regulated transcriptions of ulk1a, ulk1b and ulk2 were all found despite some differences in the temporal patterns. At the same time, the activities of glycolytic enzymes like hexokinase and phosphofructokinase both showed parallel increases. Furthermore, the feeding of a high-carbohydrate diet decreased the transcriptions of ulk1a, ulk1b and ulk2. Collectively, this study demonstrated that ulk1a, ulk1b and ulk2 in M. amblycephala had similar molecular characterizations, but with different conservation and tissue expression patterns. In addition, ulk1/2 might play important roles in maintaining the glucose homeostasis in fish through regulating the glycolytic pathway.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cipriniformes/genética , Sequência de Aminoácidos , Clonagem Molecular , Glucose/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Filogenia
4.
Sci Data ; 11(1): 226, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388642

RESUMO

The present study describes the kidney transcriptome of Labeo rohita, a freshwater fish, exposed to gradually increased salinity concentrations (2, 4, 6 and 8ppt). A total of 10.25 Gbps data was generated, and a suite of bioinformatics tools, including FEELnc, CPC2 and BLASTn were employed for identification of long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). Our analysis revealed a total of 170, 118, 99, and 269 differentially expressed lncRNA and 120, 118, 99, and 124 differentially expressed miRNAs in 2, 4, 6 and 8 ppt treatment groups respectively. Two competing endogenous RNA (ceRNA) networks were constructed i.e. A* ceRNA network with up-regulated lncRNAs and mRNAs, down-regulated miRNAs; and B* ceRNA network vice versa. 2ppt group had 131 and 83 lncRNA-miRNA-mRNA pairs in A* and B* networks, respectively. 4ppt group featured 163 pairs in A* network and 191 in B* network, while the 6ppt had 103 and 105 pairs. 8ppt group included 192 and 174 pairs. These networks illuminate the intricate RNA interactions in freshwater fish to varying salinity conditions.


Assuntos
Cipriniformes , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Animais , Redes Reguladoras de Genes , Rim , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Cipriniformes/genética , Salinidade
5.
BMC Genomics ; 25(1): 194, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373886

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMPs) are part of the transforming growth factor beta (TGF-ß) superfamily and play crucial roles in bone development, as well as in the formation and maintenance of various organs. Triplophysa dalaica, a small loach fish that primarily inhabits relatively high elevations and cooler water bodies, was the focus of this study. Understanding the function of BMP genes during the morphogenesis of T. dalaica helps to clarify the mechanisms of its evolution and serves as a reference for the study of BMP genes in other bony fishes. The data for the T. dalaica transcriptome and genome used in this investigation were derived from the outcomes of our laboratory sequencing. RESULTS: This study identified a total of 26 BMP genes, all of which, except for BMP1, possess similar TGF-ß structural domains. We conducted an analysis of these 26 BMP genes, examining their physicochemical properties, subcellular localization, phylogenetic relationships, covariance within and among species, chromosomal localization, gene structure, conserved motifs, conserved structural domains, and expression patterns. Our findings indicated that three BMP genes were associated with unstable proteins, while 11 BMP genes were located within the extracellular matrix. Furthermore, some BMP genes were duplicated, with the majority being enriched in the GO:0008083 pathway, which is related to growth factor activity. It was hypothesized that genes within the BMP1/3/11/15 subgroup (Group I) play a significant role in the growth and development of T. dalaica. By analyzing the expression patterns of proteins in nine tissues (gonad, kidney, gill, spleen, brain, liver, fin, heart, and muscle), we found that BMP genes play diverse regulatory roles during different stages of growth and development and exhibit characteristics of division of labor. CONCLUSIONS: This study contributes to a deeper understanding of BMP gene family member expression patterns in high-altitude, high-salinity environments and provides valuable insights for future research on the BMP gene family in bony fishes.


Assuntos
Proteínas Morfogenéticas Ósseas , Cipriniformes , Animais , Filogenia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Cipriniformes/genética , Fator de Crescimento Transformador beta/genética , Transcriptoma
6.
Gene ; 902: 148154, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218382

RESUMO

Acheilognathus gracilis, a bitterling species, distribute in lower reaches of Yangtze River. They are identified as the top-priority bitterling species for conservation as having high evolutionary distinctiveness and are at risk of extinction. In present study, we first sequenced the complete mitogenome of A. gracilis and analyzed its phylogenetic position using 13 PCGs. The A. gracilis mitogenome is 16,774 bp in length, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, a control region and the origin of the light strand replication. The overall base composition of A. gracilis in descending order is T 27.9 %, A 27.7 %, C 26.1 % and G 18.3 %, shows a unusual AT-skew with slightly negative. Further investigation revealed A. gracilis uses excess T over A in NADH dehydrogenase 5 (nd5), whereas the most of other bitterlings are biased toward to use A not T, implying there is likely to be unique strategy of adaptive evolution in A. gracilis. We also compared 13 PCGs of 30 bitterling mitogenomes and the results exhibit highly conservative. Phylogenetic trees constructed by 13 PCGs strongly support the monophyly of Acheilognathus and the paraphyly of Rhodeus and Tanakia. Current results will provide valuable information for follow-up research on conservation of species facing with serious population decline and can provide novel insights into the phylogenetic analysis and evolutionary biology research.


Assuntos
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animais , Filogenia , Cyprinidae/genética , Cipriniformes/genética , Sequência de Bases
7.
Int J Biol Macromol ; 259(Pt 1): 129239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184041

RESUMO

Loach (Misgurnus anguillicaudatus) is a common freshwater commercial fish species in China. The meat of this fish is a good source of protein and other nutrients that are needed for human health. Aquaculture challenges such as diseases and pest susceptibility, excessive density, and nutritional deficiency result in low production of loach rather than increased demand. Due to a lack of knowledge about the immune system of loaches, we carried out this study to better understand its antibacterial molecular mechanism. Here, we performed RNA sequencing from liver tissue obtained from soya bean-fermented fed loach after subjecting it to the LPS challenge. The results revealed a total of 18,399 differentially expressed genes (DEGs) in the LPS-treated and control groups. There were 7482 DEGs that were upregulated and 10,917 DEGs were downregulated. The enrichment analysis of DEGs revealed that the majority of DEGs were found to be abundant in the pathways of DNA replication, spliceosome, nucleotide exception repair, cell cycle, and Herpes simplex virus 1 infection. Furthermore, qRT-PCR analysis of 21 selected DEGs demonstrated that the transcriptomic data is extremely reliable. Overall, this study provides insight into the molecular features and control mechanisms of genes that affect loach growth. The availability of this information will also contribute to the enhancement of the breeding and protection of loach resources.


Assuntos
Cipriniformes , Transcriptoma , Animais , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Soja/genética , Melhoramento Vegetal , Cipriniformes/genética , Cipriniformes/metabolismo
8.
Int J Biol Macromol ; 256(Pt 1): 128310, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007023

RESUMO

This study describes the cloning and characterization of Period 1a and Period 1b genes and the analysis of their mRNA and protein expression in Amur minnow (Phoxinus lagowskii) after exposure to different light cycles. The full-length P. lagowskii Per1a and Per1b genes encode proteins consisting of 1393 and 1409 amino acids, and share high homology with the per1 genes of other freshwater fish species. The Per1a and Per1b genes were widely expressed within the brain, eye, and peripheral tissues. The acrophase of the Per1a gene in the pituitary gland occurred during the dark phase at ZT15 (zeitgeber time 15, 12 L: 12 D) and ZT18 (8 L, 16 D), whereas the acrophase of the Per1b gene in the pituitary gland was observed during the light phase. Our study suggests that the expression of Per1a and Per1b in P. lagowskii varied depending on differences in circadian rhythm patterns. The results of our dual-luciferase reporter assays demonstrated that the P. lagowskii Per1b gene enhances the activation of NF-κB. This study is the first to examine the circadian clock gene Per1a and Per1b in the high-latitude fish P. lagowskii, offering valuable insights into the effects of different light periods on this fish species.


Assuntos
Relógios Circadianos , Cipriniformes , Animais , Relógios Circadianos/genética , Distribuição Tecidual , Ritmo Circadiano/genética , Cipriniformes/genética , RNA Mensageiro/genética , Clonagem Molecular
9.
J Fish Biol ; 104(2): 484-496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37344383

RESUMO

A new species, Sinocyclocheilus xingyiensis, is described based on specimens collected from a karst cave in Guizhou Province, China. The authors used an integrated taxonomic approach, including morphological and molecular data, to identify the new species as a member of the Sinocyclocheilu angularis group, and it can be distinguished from all other members of this group by a combination of the following features: two pairs of long barbels and long pectoral fins, 42-46 lateral-line scales, 7 (13-14) on outer (inner) side of the first gill arch and 35 (14-15 + 4 + 16 - 17) vertebrae. Phylogenetic analyses based on the cytochrome b (cyt b) gene fragment suggest that S. xingyiensis is a sister lineage to Sinocyclocheilus flexuosdorsalis. The genetic distance (Kimura 2-parameter) between the S. xingyiensis and S. angularis groups of Sinocyclocheilus species based on cyt b gene fragment ranged from 1.2% to 15.4%.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cipriniformes/genética , Cipriniformes/anatomia & histologia , Rios , Filogenia , Citocromos b/genética , Cyprinidae/genética , Cyprinidae/anatomia & histologia , China
10.
J Fish Biol ; 104(1): 171-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37775959

RESUMO

The variability in the stenotopic miniature rasborine Boraras maculatus (Cypriniformes: Danionidae: Rasborinae) across acidic-water habitats of Peninsular Malaysia (PM) was investigated using two molecular markers (the mitochondrial cytochrome c oxidase subunit I [COI] gene and the nuclear rhodopsin gene), as well as morphological evidence. Molecular phylogenetic analyses revealed differentiation among populations of B. maculatus in PM with the distinction of four allopatric lineages. Each of them was recognized as a putative species by automatic species delimitation methods. These lineages diverged from each other between 7.4 and 1.9 million years ago. A principal component analysis (PCA) was conducted to examine the multivariate variation in 11 morphometric measurements among three of these lineages. PCA results showed a significant overlap in morphological characteristics among these lineages. Additionally, a photograph-based machine learning approach failed to fully differentiate these lineages, suggesting limited morphological differentiation. B. maculatus represents a case of morphological stasis in a stenotopic miniature species. Strong habitat preference, coupled with long-term habitat fragmentation, may explain why each lineage of B. maculatus has a restricted distribution and did not disperse to other regions within and outside of PM, despite ample possibilities when the Sunda shelf was emerged and drained by large paleodrainages for most of the past 7 million years. The conservation status of B. maculatus and its peat swamp habitats are discussed, and it is concluded that peat swamps comprise several evolutionary units. Each of these units is considered a conservation unit and deserves appropriate protection.


Assuntos
Cipriniformes , Animais , Filogenia , Malásia , Cipriniformes/genética , Filogeografia , Solo , Variação Genética , DNA Mitocondrial/genética
11.
Gene ; 893: 147947, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37923093

RESUMO

Extreme conditions in caves pose survival challenges for cave dwellers, who gradually develop adaptive survival features. Cavefishes are one of the most successful animals among cave dwellers. Triplophysa cavefishes are an important group of cavefishes, and they show remarkable adaptability to the extreme environments of caves. However, there is a limited understanding of their adaptation mechanisms. In this study, eight complete mitochondrial genomes of Triplophysa cavefishes were newly obtained, and their genomic characteristics, including the base composition, base bias, and codon usage, were analyzed. Phylogenetic analysis was carried out based on 13 mitochondrial protein-coding genes from 44 Nemacheilidae species. This showed that Triplophysa cavefishes and non-cavefishes separate into two reciprocally monophyletic clades, suggesting a single origin of the cave phenotype. Positive selection analysis strongly suggested that the selection pressure in cavefishes is higher than that in non-cavefishes. Furthermore, the ND5 gene in cavefishes showed evidence of positive selection, which suggests that the gene may play an important role in the adaptation of cavefishes to the cave environment. Protein structure analysis of the ND5 subunit implied that the sites of positive selection in cavefishes might allow them to acquire lower ND5 protein stability, compared to that in non-cavefishes, which might help the accumulation of nonsynonymous (mildly deleterious) mutations. Together, our study revealed the genetic signatures of cave adaptation in Triplophysa cavefishes from the perspective of energy metabolism.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Cipriniformes/genética , Genômica
12.
Genes (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136932

RESUMO

Hemiculterella wui is an endemic small freshwater fish, distributed in the Pearl River system and Qiantang River, China. In this study, we identified and annotated the complete mitochondrial genome sequence of H. wui. The mitochondrial genome was 16,619 bp in length and contained 13 protein coding genes (PCGs), two rRNA genes, 22 tRNA genes, and one control region. The nucleotide composition of the mitochondrial genome was 29.9% A, 25.3% T, 27.4% C, and 17.5% G, respectively. Most PCGs used the ATG start codon, except COI and ATPase 8 started with the GTG start codon. Five PCGs used the TAA termination codon and ATPase 8 ended with the TAG stop codon, and the remaining seven genes used two incomplete stop codons (T and TA). Most of the tRNA genes showed classical cloverleaf secondary structures, except that tRNASer(AGY) lacked the dihydrouracil loop. The average Ka/Ks value of the ATPase 8 gene was the highest, while the average Ka/Ks value of the COI gene was the lowest. Phylogenetic analyses showed that H. wui has a very close relationship with Pseudohemiculter dispar and H. sauvagei. This study will provide a valuable basis for further studies of taxonomy and phylogenetic analyses in H. wui and Xenocyprididae.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Cipriniformes/genética , Filogenia , Códon de Iniciação , Genoma Mitocondrial/genética , Códon de Terminação , RNA de Transferência/genética , RNA de Transferência/química , Adenosina Trifosfatases/genética
13.
Genes (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136969

RESUMO

Understanding historical processes underlying lineage distribution patterns is a primary goal of phylogeography. We selected Gobio rivuloides (Cypriniformes: Gobionidae) as a model to improve our knowledge about how intraspecific genetic divergence of freshwater fishes arises in coastal drainages of northern China via statistical analysis using cytochrome b gene. The time-calibrated phylogeny of G. rivuloides showed the divergence of two major lineages (I and II) at ~0.98 Ma (million years ago). Lineage I can be divided into two sub-lineages (I-A and I-B) with a divergence time of ~0.83 Ma. Sub-lineage I-A inhabits the Amur River, and sub-lineage I-B lives in the Luan River and Liao River. Lineage II is distributed in the Yellow River and Hai River, with close genetic relationships between the two drainages, and can be split into two sub-lineages (II-C and II-D) with a divergence time of ~0.60 Ma. Our findings indicate that the splitting of lineages and sub-lineages could be attributed to geographic isolation caused by the formation of the Bohai Sea, river capture, and the episodic hydrologic closing of a paleolake during the late Lower-Middle Pleistocene. It is also the first report we know of displaying a clear phylogeographic break for freshwater fishes across coastal drainages in northern China.


Assuntos
Cipriniformes , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Filogenia , Filogeografia , Água Doce , Cipriniformes/genética
14.
Mol Biol Rep ; 50(12): 10651-10656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962705

RESUMO

BACKGROUND: Rhinogobio nasutus, an endemic species from the Yellow River, is listed under the second class of the National Key Protected Wildlife List in China due to its dramatically decreased population. Despite its important status, the mitochondrial genes and phylogenetic relationships of R. nasutus are unknown. METHODS AND RESULTS: The complete mitochondrial genome of R. nasutus was sequenced, assembled, and annotated for the first time. The mitochondrial genome was 16,609 bp in length, consisting of 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 non-coding control region. The gene order in the mitochondrial genome of R. nasutus was identical to that of other Rhinogobios species. Analysis of synonymous and non-synonymous nucleotide substitutions showed that the Ka/Ks ratio in all tested protein-coding genes was less than 1, indicating that these genes were evolving under purifying selection. Further phylogenetic analysis showed that R. nasutus was first clustered with R. typus, then grouped with the other two Rhinogobio species, indicating the phylogenetically close relationship between R. nasutus and R. typus. CONCLUSIONS: This was the first genomic resource developed for R. nasutus, which could not only improve our understanding of its phylogenetic status, but also serve as a genomic tool for the development of genetic markers that will be used in conservation and evolutionary genetics studies.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Rios , Análise de Sequência de DNA/métodos , Cipriniformes/genética
15.
Genes (Basel) ; 14(10)2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895287

RESUMO

Mitochondrial genomes (mitogenomes) have been widely used in phylogenetic analysis and evolutionary biology. The Labeoninae is the largest subfamily of Cypriniformes and has great economic importance and ecological value. In this study, we sequenced, annotated, and characterized the complete mitogenome of Linichthys laticeps and then constructed the phylogenetic tree with previously published Labeoninae mitogenomes. The mitogenome of L. laticeps was 16,593 bp in length, with an A + T content of 57.1%. The mitogenome contained a standard set of 37 genes and a control region with the same order and orientation of genes as most fish mitogenomes. Each protein-coding gene (PCG) was initiated by an initial ATG codon, excluding COI, that began with a GTG codon. Furthermore, most of the PCGs were terminated by a conventional stop codon (TAA/TAG), while an incomplete termination codon (TA/T) was detected in 7 of the 13 PCGs. Most tRNA genes in L. laticeps were predicted to fold into the typical cloverleaf secondary structures. The Ka/Ks (ω) values for all PCGs were below one. The phylogenetic relationships of 96 Labeoninae mitogenomes indicated that Labeoninae was not a monophyletic group and L. laticeps was closely related to the genera Discogobio and Discocheilus. Overall, our study provided the first complete annotated mitogenome of L. laticeps, which filled a knowledge gap in Labeoninae and extended the understanding of the taxonomy and mitogenomic phylogeny of the subfamily Labeoninae.


Assuntos
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animais , Cipriniformes/genética , Filogenia , Genoma Mitocondrial/genética , Cyprinidae/genética , Códon/genética
16.
Genes (Basel) ; 14(10)2023 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895322

RESUMO

Hemoglobin (Hb) usually comprises two α and two ß subunits, forming a tetramer responsible for oxygen transportation and storage. Few studies have elucidated fish hemoglobin immune functions. Megalobrama amblycephala is a freshwater-cultured fish prevalent in China. We identified two M. amblycephala hemoglobin subunits and analyzed their expression patterns and antibacterial activities. The respective full-length cDNA sequences of the M. amblycephala Hb α (MaHbα) and ß (MaHbß) subunits were 588 and 603 bp, encoding 143 and 148 amino acids. MaHbα and MaHbß were highly homologous to hemoglobins from other fish, displaying typical globin-like domains, most heme-binding sites, and tetramer interface regions highly conserved in teleosts. In phylogenetic analyses, the hemoglobin genes from M. amblycephala and other cypriniformes clustered into one branch, and those from other fishes and mammals clustered into other branches, revealing fish hemoglobin conservation. These M. amblycephala Hb subunits exhibit different expression patterns in various tissues and during development. MaHbα is mainly expressed in the blood and brain, while MaHbß gene expression is highest in the muscle. MaHbα expression was detectable and abundant post-fertilization, with levels fluctuating during the developmental stages. MaHbß expression began at 3 dph and gradually increased. Expression of both M. amblycephala Hb subunits was down-regulated in most examined tissues and time points post-Aeromonas hydrophila infection, which might be due to red blood cell (RBC) and hematopoietic organ damage. Synthetic MaHbα and MaHbß peptides showed excellent antimicrobial activities, which could inhibit survival and growth in five aquatic pathogens. Two M. amblycephala hemoglobin subunits were identified, and their expression patterns and antibacterial activities were analyzed, thereby providing a basis for the understanding of evolution and functions of fish hemoglobins.


Assuntos
Cyprinidae , Cipriniformes , Animais , Cyprinidae/genética , Filogenia , Sequência de Bases , Sequência de Aminoácidos , Cipriniformes/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Subunidades de Hemoglobina/genética , Subunidades de Hemoglobina/metabolismo , Antibacterianos/metabolismo , Mamíferos/genética
17.
PLoS One ; 18(10): e0283088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903086

RESUMO

Environmental DNA (eDNA) metabarcoding has been increasingly used to monitor the community assemblages of a wide variety of organisms. Here, we test the efficacy of eDNA metabarcoding to assess the composition of Iberian freshwater fishes, one of the most endangered groups of vertebrates in Spain. For this purpose, we sampled 12 sampling sites throughout one of Spain's largest basins, the Duero, which is home to approximately 70% of the genera and 30% of the primary freshwater fish in Spain. We sampled these sampling sites in the summer by using electrofishing, a traditional sampling method, and eDNA metabarcoding of river water samples using the mitochondrial 12S rRNA gene (12S) as a marker. We also resampled four of these sampling sites in autumn by eDNA. We compared the results obtained through eDNA metabarcoding with those of electrofishing surveys (ones conducted for the present study and past ones) and assessed the suitability of 12S as an eDNA metabarcoding marker for this group of freshwater fishes. We found that the 12S fragment, analysed for 25 Iberian species, showed sufficient taxonomic resolution to be useful for eDNA approaches, and even showed population-level differences in the studied populations across the tissue samples for Achondrostoma arcasii. In most cases, a greater number of species was detected through eDNA metabarcoding than through electrofishing. Based on our results, eDNA metabarcoding is a powerful tool to study the freshwater fish composition in the Iberian Peninsula and to unmask cryptic diversity. However, we highlight the need to generate a local genetic database for 12S gene for such studies and to interpret the results with caution when studying only mitochondrial DNA. Finally, our survey shows that the high detection sensitivity of eDNA metabarcoding and the non-invasiveness of this method allows it to act as a detection system for species of low abundance, such as early invasive species or species in population decline, two key aspects of conservation management of Spanish freshwater fishes.


Assuntos
Cipriniformes , DNA Ambiental , Animais , Código de Barras de DNA Taxonômico/métodos , Biodiversidade , Monitoramento Ambiental/métodos , Peixes/genética , Água Doce , Cipriniformes/genética , Água , Ecossistema
19.
Fish Shellfish Immunol ; 142: 109118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774901

RESUMO

Species in Triplophysa display strong adaptability to the extreme environment of the plateau, thus offering an ideal model to study the molecular mechanism of fish adaptation to environmental stress. In the present study, we conducted integrated analysis of the transcriptome and metabolism of liver tissue in Triplophysa siluroides under heat stress (28 °C) and control (10 °C) conditions to identify heat stress-induced genes, metabolites and pathways. RNA-Seq identified 2373 differentially expressed genes, which consisted of 1360 upregulated genes and 1013 downregulated genes, in the heat stress group vs. the control group. Genes in the heat shock protein (Hsp) family, including Hsp40, Hsp70, Hsp90 and other Hsps, were strongly upregulated by heat stress. Pathway enrichment analysis revealed that the PI3K/AKT/mTOR and protein processing in the endoplasmic reticulum (ER) pathways were significantly affected by heat stress. Metabolism sequencing identified a total of 155 differentially abundant metabolites, including 118 significantly upregulated metabolites and 37 downregulated metabolites. Combined analysis of the transcriptome and metabolism results showed that ubiquitin-dependent proteolysis and purine metabolism pathways were enhanced in response to acute heat stress to protect cells from damage under stress conditions. The results of this study may contribute to our understanding of the underlying molecular mechanism of the heat stress response in cold-water fish.


Assuntos
Cipriniformes , Transcriptoma , Animais , Altitude , Fosfatidilinositol 3-Quinases/genética , Perfilação da Expressão Gênica/veterinária , Resposta ao Choque Térmico/genética , Cipriniformes/genética
20.
Front Immunol ; 14: 1247038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662918

RESUMO

The loach (Misgurnus anguillicaudatus), a small commercial fish that is widely cultivated for its high-quality protein, vitamins, minerals, and essential amino acid, is a member of the genus Misgurnus and the family Cyprinidae. In this study, we gave the LPS-injected loach fermented soybean meal and used transcriptome sequencing to investigate the impact of the fermented soybean powder on the loach's immune system. 3384 up-regulated genes and 12116 down-regulated genes were found among the 15500 differentially expressed genes, according to the results. The differentially expressed genes were shown to be involved in cellular processes, metabolic processes, cellular anatomical entities, and binding, according to the Go functional annotation. Meanwhile, the KEGG enrichment analysis indicated that the soybean fermented powder treated groups showed significant differences in DNA replication, Nucleotide excision repair, Fanconi anemia pathway, and Base excision repair pathways, suggesting that these pathways are closely related to the enhancement of the immune function of loach by soybean fermented powder. The particular conclusions not exclusively can provide a new conception for the rational utilization of soybean fermented powder but also can provide theoretical guidance for the subsequent healthy breeding of loach.


Assuntos
Cipriniformes , Doenças dos Peixes , Lipopolissacarídeos , /química , Cipriniformes/genética , Cipriniformes/imunologia , Distribuição Aleatória , Regulação da Expressão Gênica , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Aquicultura , Alimentos Fermentados , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...